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N–N Q1 Q2bond formation in Ugi processes: from nitric
acid to libraries of nitramines†

Valentina Mercalli,ab Aude Nyadanu,acd Marie Cordier,e Gian Cesare Tron,*b

Laurence Grimaud*cd and Laurent El Kaim*a

The Ugi reaction has drawn considerable attention over the years

leading to numerous libraries of heterocycles and various exten-

sions changing the nature of the components of the coupling. We

report here the use of nitric acid as carboxylic acids surrogates,

displaying the first aminative Ugi-type reaction leading to nitramines.

The success encountered by the use of the Passerini and Ugi
reactions for the preparation of libraries of bioactive com-
pounds has led to a renewal of isocyanide chemistry in the last
two decades.1 The potential of the Ugi reactions, in particular,
has been widely explored through extensive modifications of
the initial partners of the coupling. For most of these studies,
the functional tolerance of the coupling allowed the addition of
further reactive centers prone to cyclise after an initial Ugi
reaction (the so-called Ugi post-condensations).2 Extensions
associated with modifications of the Ugi reaction mechanism
are less documented due to a complex reaction cascade with
each partner acting at the different stages of the mechanism.
This is particularly the case of the acidic component which
participates in the initial electrophilic activation of the imine
but also plays a key role in the final formation of the Ugi
adduct.3 Thus, the replacement of the carboxylic acid has only
been proposed with a reduced number of acids: thiocarboxylic

acids still involving a Mumm rearrangement,4 isocyanic and
isothiocyanic acids leading to hydantoin derivatives5 via a final
cyclization, hydrazoic acid forming tetrazoles in an electrocy-
clization process,6 electron-poor phenols with a final Smiles
rearrangement,7 and squaric acid8 and hydroxy-tropolone9

which behave similarly.
In most of these extensions, the initial amine partner is

involved in a final N–C bond formation as observed in the N-
acylation step of the Mumm rearrangement or the N-arylation
of the Smiles rearrangement. Herein, we wish to report the use
of nitric acid leading to the first N–N bond formation with the
amine partner of the Ugi reaction (Scheme 1).

Strong mineral acids are known to trigger both Ugi and
Passerini reactions but these acidic components have led to
very few useful synthetic applications. Indeed, the strong
activation of the carbonyl component is counterbalanced by
the instability of the isocyanide in the presence of strong acids
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Scheme 1 Acidic surrogates in Ugi reactions.
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together with the weak nucleophilicity of the associated
counter-anion. The latter point leads to important competitions
in the attack of the intermediate nitrilium by the stabilized
anion, the solvent, water or even the intermediate amines in the
case of Ugi reactions.10 Thus strong mineral acids (HCl, H2SO4,
HNO3 or H3PO4) have been reported in the Passerini reaction
but require a large excess of the carbonyl derivative to form
hydroxyamide derivatives in good yields.11 Although their stoi-
chiometric use in the Ugi reaction is not hampered by the high
acidity of the medium, the few available reports are mostly
limited to secondary amines12 or present important competi-
tion with the Passerini reaction.10 These difficulties together
with the high synthetic potential of these acids towards undi-
sclosed N–S, N–P or N–N Ugi adducts was challenging enough
to re-evaluate some of these reactions. Nitric acid with its single
hydroxy group appeared to be the best candidate for this study.

When equimolar amounts of para-chlorobenzyl amine,
cyclohexyl isocyanide, isovaleraldehyde and nitric acid used
as a 70% aqueous solution were mixed in methanol (0.3 M), we
observed the formation of a white precipitate. After two hours,
the precipitate could be either separated by filtration and
washing with diethyl ether to afford the ammonium nitrate
1a obtained in 90% isolated yield or the mixture could be
directly treated by a sodium hydrogencarbonate solution to
afford after extraction with diethyl ether the amine 2a with the
same yield (Scheme 2). Working in dichloromethane or acet-
onitrile instead of MeOH afforded 2a in comparable yields.
Other starting Ugi components afforded similar results when
the reaction was performed in CH2Cl2 with 70% nitric acid; 2b
and 2c were obtained after basic treatment without observing
any precipitation in the medium in these cases (Scheme 2).
Working in DMF was more rewarding as besides 2a obtained in
75% yield, the expected nitramine 3a could be isolated as a side
product in a poor 13% yield. Adding magnesium sulfate to the
mixture just gave a small increase and a more concentrated
nitric acid (90%) allowed us to reach 20% (Scheme 2).

We next started to evaluate the use of nitrate salts together
with various ammonium salts as the starting amine to optimize
conditions with a lower amount of water in the solvent.
Although sodium nitrate together with ammonium chloride
4a allowed the improvement of the yields in DMF, the best
results were obtained with ammonium nitrate 5a,13,14 which
gave nitramine 3a in 69% isolated yield (Scheme 3). An even

better 89% isolated yield was obtained when the same reaction
was conducted in MeOH. The structure of 3a was further
confirmed through the nitration of amine 2a under standard
conditions (nitric acid and acetic anhydride).15

With this set of optimized conditions in hands, the scope of
this new nitramine synthesis was further examined (Scheme 4).16

The reaction turned out to be efficient with both aliphatic
(3a–d) and aromatic aldehydes (3e–j). The range of isocyanides
successfully involved in this coupling is rather wide. Indeed,
alkyl (3a–m, 3q–r), benzyl (3n), aryl (3o) or isocyanoacetate (3p)
derivatives gave the desired products in moderate to good
yields. Surprisingly, no desired product could be isolated from
the reaction of tert-butylisocyanide probably due to its particu-
lar acidic sensitivity. The isolation and X-ray analyses of com-
pound 3l further confirmed the structure of the products
formed in this new nitric acid-promoted Ugi reaction.17
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Scheme 2 Ugi-type reaction with nitric acid in various solvents.

Scheme 3 Optimization using ammonium salts.

Scheme 4 Scope of the nitramine synthesis.
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Concerning the amine partner in this coupling, the reaction
proceeded smoothly with aliphatic (3e, 3m), allylic (3c, 3r) and
benzylic (3a–b, 3n–q) amines. However, no reaction was
observed when using aniline, probably because of its lower
nucleophilicity. Secondary amines such as pyrrolidine fail to
afford the expected Ugi nitramide probably because of an
unfavorable [1,3]-shift of the nitro group, the ketoamide 6 could
just be isolated in low yield (Scheme 5). Similarly, no distal
nitration could be observed with piperazine in contrast to the
Ugi reaction with carboxylic acids (Scheme 5).18

By analogy with the mechanism of the classical Ugi
reaction,19 we can propose a plausible pathway involving the
intermolecular trapping of the nitrilium by the nitrate anion.
The resulting nitroimidate could further evolve through a [1,4]-
shift of the nitro according to a Mumm-type transfer, to give the
corresponding nitramine as depicted in Scheme 6.20

Nitramines are usually prepared through nitration of their
related amine derivatives.15 They are mostly known for their
use as energetic materials and explosives21 but also display
some interesting applications as synthetic intermediates.22

They can be easily reduced to hydrazine and nitrosamine
derivatives.23 Their biological activities have been mostly
exploited in the agrochemical field with some promising her-
bicide and fungicide activities.24

To conclude, we have re-examined the use of strong mineral
acids in isocyanide-based multicomponent reactions. The use
of nitric acid was just reported once before as a catalyst in
Passerini reactions with water as final nucleophilic trapping
agents. The use of stoichiometric amount of acid in the absence
of water ensures an efficient trapping of the intermediate
nitrilium by the moderately nucleophilic nitrate anion followed
by an intramolecular nitration. The extension of this approach

to other families of strong acid (phosphonic and sulfonic acids)
is under study in our research group as well as the potential
applications of the newly obtained Ugi nitramines.
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